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Hybrid Modeling and Robust Control for
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Abstract— This paper presents a hybrid system modeling and
robust process optimization and control scheme for a layer-by-
layer manufacturing process. In particular, the optimization of
the layering times is offered as a solution for overcoming the chal-
lenge of maintaining through-cure during thick-part fabrication
using ultraviolet radiation inputs that are subjected to in-domain
attenuation. The layer deposition and curing sequence is modeled
as a hybrid system by treating the underlying cure kinetics and
the associated thermal process as a continuous dynamics switched
by the discrete layering events. The interlayer hold times are
taken as the control variables that can be optimally selected
to minimize the final cure deviation across all layers. A robust
optimization problem is posed that includes the sensitivity of the
objective function to process the model parameter uncertainty.
By adjoining the hybrid system model and the associated sen-
sitivity constraints to the objective, the necessary conditions of
optimality are derived. The advantages of the proposed robust
optimization scheme are then demonstrated by simulating a layer-
by-layer thick composite laminate fabrication process. It is shown
that, compared with the use of nominal optimal layering time con-
trol, robust optimal layering time control significantly improves
the performance in terms of closely tracking a desired final cure
level distribution in the presence of parametric uncertainty.

Index Terms— Additive manufacturing (AM), hybrid modeling
of layer-by-layer manufacturing, optimal control of hybrid
systems, robust optimization, ultraviolet (UV) curing process.

I. INTRODUCTION

ADDITIVE manufacturing (AM) through layer-by-layer
deposition is an actively researched topic for a wide

range of applications due to its advantages of reduced process-
ing time, energy use, material waste, and favorable overall
environmental impact [1]–[3]. However, its industrial appli-
cation is still limited due to concerns about product quality.
In almost all AM processes, including metal and polymer
material deposition, the most common product quality issues
are related to geometrical inaccuracy, material shrinkage, layer
delamination, and residual stresses [1], [3]–[6]. To overcome
some of these product quality defects, a few pragmatic solu-
tions have been proposed. These include an intermediate use
of computer numerical control machines [7] and shrinkage

Manuscript received January 8, 2016; accepted April 3, 2016. Manuscript
received in final form April 22, 2016. This work was supported in part by
the U.S. National Science Foundation under Grant CMMI-1055254 and in
part by the U.S. Department of Energy through the GATE Program under
Grant DE-EE0005571. Recommended by Associate Editor M. Prandini.

The authors are with the Clemson University International Cen-
ter for Automotive Research (CUICAR), Applied Dynamics and Con-
trol Group, Greenville, SC 29607, USA (e-mail: ayebi@clemson.edu;
beshah@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2016.2558626

modeling [8] configured to improve the dimensional accuracy.
In [9] and [10], closed-loop control has been used for tem-
perature and cladding height control in metal deposition that
may indirectly compensate for residual stresses and geometric
accuracy.

The product quality can also be improved further
through process optimization and control that imbeds process
knowledge via high-fidelity modeling of the underlying layer-
by-layer process. This can be facilitated by a hybrid system
modeling framework, where the addition of each layer consti-
tutes a discrete event on the otherwise continuous dynamics of
the underlying physical phenomena in the part buildup process.
Although we have not come across prior work, other than our
own [13], [14], that models AM processes as hybrid systems,
the hybrid systems perspective has been used by others for
modeling other manufacturing processes that involve different
modes of operation. Specific examples include a steel anneal-
ing process, where an individual ingot passes through multiple
furnaces with different operating conditions corresponding
to certain quality requirements [11] and chemical processes
involving different phases of chemical treatment [12].

In [13] and [14], we introduced the hybrid dynamic system
modeling perspective for the layer-by-layer ultraviolet (UV)
curing process and illustrated how that perspective can be
exploited for nominal optimization and optimal control of the
process. To begin with, for UV curing thick parts, the need
for layer-by-layer part buildup and process optimization is
triggered mainly due to the attenuation of UV radiation as
it passes through a thick layer of material [15]. To overcome
the attenuation challenge and the associated process quality
issues, in [13] we proposed a stepped-concurrent layering and
curing (SCC) process, where new layers are added before the
previous ones cure completely in such a way that each layer
is exposed to the full UV intensity only part of the time, and
as a result cure level deviations can be minimized in the final
product. In SCC, the introduction of a new layer changes the
initial conditions of the physical processes and the underlying
process dynamics and their spatial domains switch at each
discrete layering instant. One can therefore treat the SCC as a
multimode hybrid dynamic system, where a mode constitutes
the physical processes defined on spatial domains between
layer additions. As a layer-by-layer deposition process, SCC
has a predefined mode sequence and a growing spatial domain.

In [13], we motivated the need for optimal interlayer
hold times for the SCC process and developed a systematic
optimization scheme to compute these optimal hold times
by treating them as the control inputs. Later in our recent
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ACC paper [14], we studied the effect of the augmented
optimization of both layer-by-layer UV input intensity and
interlayer hold times as the control variables. Therein, we con-
sidered the complete coupled PDE–ODE UV curing process
model for deriving the optimality conditions. The optimization
in both our previous works only dealt with model-based opti-
mizations that consider nominal process parameters. However,
uncertain model parameters related to cure kinetics such as
constants related to reaction order and activation energy affect
the utility of the optimization results. In this paper, we build on
the work in [14] to address the robustness issue. Specifically,
we perform the following.

1) We pursue robust optimization that considers the sensi-
tivity of the objective (overall cure level deviation) with
respect to process parameter changes.

2) We consider a UV curing process model we recently
experimentally validated [16].

3) We provide detailed derivations for the first-order nec-
essary optimality conditions in the robust hybrid frame-
work for the layer-by-layer process.

4) We include new simulation results.
In the broader literature, there exist few works that

treat the robustness analysis of theoretical hybrid systems.
In [17] and [18], the problem is formulated in a game-
theoretic framework that requires a solution of partial differ-
ential inequalities. However, the applicability of the abstract
results for application-oriented problems has not been demon-
strated well. In contrast to this, there is a large volume of
work available for application-oriented nonhybrid nonlinear
problems [19]–[22]. A minmax performance index that ana-
lyzes the worst case performance is commonly adopted for
open-loop optimization of nonlinear systems [19]. However,
minmax approaches usually handle independent deterministic
uncertainties and compute the worst case value, which may
have a low probability of occurrence. This often leads to a con-
servatism, which gives compromised results for more represen-
tative uncertainty levels. To improve the minmax approaches, a
multiobjective approach has been proposed to add performance
indices that account for uncertainty directly [21], [22]. This
approach is widely used for final-state optimization problems
by defining a robustness term via either the sensitivity [23]
or the variance [20] of the nominal performance objective for
deterministic and stochastic uncertainty models, respectively.
Apart from such direct consideration of robustness analysis
for the optimization process, different approaches that include
feedback control [24] and online estimation of uncertain
parameters [25] can be pursued to accommodate uncertainties.
Our review here is limited to application-oriented approaches
that incorporate uncertainty into the final-state performance
objectives (e.g., minimization of final cure level deviation).
More extensive robust performance analyses are available for
general nonlinear problems including H∞ methods [26] and
differential geometric approaches [27].

For the UV curing process model, where the uncertain
parameters appear as nonlinear functions of the state, we
found that the sensitivity approach for robust performance
analysis is a suitable candidate over other approaches. This is
because it eliminates the need for a disturbance model of the

uncertainty, which is generally difficult to identify or bound
accurately for nonlinearly entering parameters. We extend the
sensitivity approach for the multiobjective robustness analysis
of the hybrid model for the layer-by-layer process. We con-
sider bounded deterministic parameter uncertainties and add a
robustness term as a local sensitivity of the objective function.
The optimization problem can then be solved as a regular
minimization problem by augmenting the auxiliary sensitivity
dynamics to the process dynamics [28].

In the literature, there are few works on the optimization or
optimal control of hybrid systems whose modes involve PDE
models [29], while a lot of work exists for those involving
solely ODEs [30]–[33]. In principle, for process dynamics that
involve PDEs, one can derive the optimality conditions consid-
ering either discretize then optimize or optimize then discretize
approaches via adjoint-based techniques [34]. However, the
coupling of the PDE and ODE makes the current optimization
problem nonstandard. There is some work where the coupled
system has been transformed to a standard ODE [35] or
PDE [36] optimal control problem, but both transformations
add some complexity to the respective governing equations.
In [37], the optimality conditions were derived by adjoining
the coupled PDE–ODE system directly without using any such
transformations. However, they treated a nominal nonhybrid
system.

In this paper, we derive the first-order necessary conditions
for robust optimality for the hybrid system model of the
SCC process by directly adjoining the coupled PDE–ODE
constraints of the UV curing process and the robustness
sensitivity dynamics. We set the objective function of minimal
cure level deviations at the end of the curing process as the
objective. The adjoint system and the optimality conditions are
then solved to compute the optimal control variables. Since the
most significant impact comes from optimizing the layering
times as concluded in [14], in this paper, we only consider
the layering times as the control variables. We illustrate the
effectiveness of the proposed scheme by simulating a layer-
by-layer fiberglass composite curing and part buildup process.

The remainder of this paper is organized as follows.
Section II gives a generalized 1-D model for a UV cur-
ing process and outlines the hybrid modeling formulation.
Section III details the derivation of the auxiliary sensitivity
dynamics for robustness, as well as the optimality conditions in
the hybrid framework. It also presents the numerical algorithm
for obtaining optimal solutions. Section IV offers demonstra-
tive numerical simulation results and discussions. Section V
gives the conclusions of this paper. Appendixes A and B are
provided at the end for the derivation details.

II. HYBRID PROCESS MODEL

A. 1-D UV Curing Process Model

We consider a 1-D process model for UV curing of a
single-layer composite laminate. A schematic of the process
setup is shown in Fig. 1. The curing process involves exother-
mic cure reactions (cure kinetics) that cause heat generation
and heat transfer through conduction and convection. It also
involves the attenuation of UV intensity across the layer
in the z-direction according to Beer Lambert’s law [38].
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Fig. 1. Schematic of a UV curing process.

Other modeling considerations can be referred from our recent
work [16], where a control-oriented model is validated for
UV curing of composite laminate or other works that detail
this topic [39]. The following coupled PDE–ODE systems,
along with the boundary and initial conditions, summarize the
process model for UV curing of a single layer:

ρcp
∂T (z, t)

∂ t
= ∂

∂z

(
kz
∂T (z, t)

∂z

)
+ vr�Hrρr

dα(z, t)

dt
(1a)

−kz
∂T (0, t)

∂z
+ ϑ I0 = h (T (0, t) − T∞) (1b)

∂T (l, t)

∂z
= 0 (1c)

T (z, 0) = T0 (z) (1d)
dα(z, t)

dt
= sq

0 exp (−λpz) I p
0 K D (α)

× [K1(T )+K2(T )α(z, t)]

× (1−α(z, t))
(
B̄ − α(z, t)

)
(1e)

K D (α) = 1

1+ exp (ξ (α(z, t)− αc))
(1f)

K1(T ) = A1exp

( −E1

RTabs(z, t)

)
(1g)

K2(T ) = A2exp

( −E2

RTabs(z, t)

)
(1h)

α (z, 0) = α0 (z) (1i)

where ρ and cp are the density and specific heat capacity of the
composite laminate, respectively; kz is the thermal conductiv-
ity of the laminate in the z-direction; T (zt) is the temperature
distribution at depth z and time t; vr is the volumetric fraction
of resin in the composite matrix; ρr is the density of resin;
�Hr is the polymerization enthalpy of resin conversion; ϑ is
the absorptivity constant of the UV radiation at the boundary;
I0 is the UV input intensity at the surface; h is the convective
heat transfer at the top boundary; l is the thickness of a single
layer and T∞ is the constant ambient temperature; dα(z, t)/dt
is the rate of cure conversion (rate of polymerization); s0 is the
photoinitiator concentration; p and q are constant exponents;
λ is the absorption coefficient in the resin plus fiber; B̄ is
the constant parameter related to reaction orders; ξ is the
diffusion constant; αc is the critical value of cure level;
A1 and A2 are pre-exponential rate constants; E1 and E2 are
activation energies; R is the gas constant and Tabs(z, t) is the
absolute temperature in Kelvin; and α(zt) is the cure level/state
distribution.

Fig. 2. Hybrid system formulation of the layer-by-layer curing process.

Note that in the cure kinetics model above (1e), we added
the diffusion-controlled effect model (1f) to account for the
retardation of cure propagation after a certain critical cure level
due to restriction of the species diffusion [39]. This effect is
neglected in our previous work.

B. Formulation of a Layer-by-Layer UV Curing
Process as a Hybrid System

Before posing the control of the layer-by-layer manufac-
turing process as an optimization problem, we take a closer
look at the nature of the process dynamics. In a layer-by-layer
UV curing process, as a new layer is introduced for curing,
the spatial domain, initial conditions, and boundary conditions
change, resulting in a different process dynamics. The layer
addition can be treated as a switch of the process mode from
one to another. This mode switch represents a discrete event
on the otherwise continuous curing process with its associated
thermal evolution and cure-reaction phenomena. This makes
the layer-by-layer curing process a natural externally switched
hybrid system. This hybrid system view of the layer-by-layer
curing process is depicted schematically in Fig. 2. In the
following, a mode represents the state dynamics before the
addition of a new layer. The first mode (Mode 1) has only one
layer, and all other modes have more, in increasing numbers,
as shown. The mode switching times are denoted by τ1
through τN . In this hybrid system view, the switching/layering
times are control variables that can be manipulated for a
desired effect, in this case, for minimization of the cure level
deviations in a multilayer part.

For this hybrid system realization of the layer-by-layer
curing process, the following observations and assumptions
can be made.

1) At each mode switch (layer addition), from mode i to
the next mode i + 1, the spatial domain grows and the
initial conditions of the mode (IC) change from IC − i
to IC − i + 1.

2) The process dynamics in mode i can be treated as a
single coupled PDE–ODE system with the introduction
of an interface condition (INTC) that captures the heat
transfer between the fresh layer and the layers already
in the curing process. The INTC for the curing process
is defined in (4).

3) The boundary condition (BC) of the top convective
(BC1) and the bottom insulation (BC2) are kept the same
for all the modes.
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4) Since one can only add layers, the order of the mode
switching (switching sequence) is fixed, sequential, and
known.

5) All of the mode switching times included in the ordered
vector [τ1, . . . , τN ]′ can be selected independently.

Note that in Fig. 2, the y-axis indicates the increasing spatial
domain with layer addition from the bottom to the top, while
the z-axis indicates the direction of UV attenuation. The
UV source is at the top.

Denoting the thickness of the part after the i th layer
is added by il and introducing a coordinate transformation
y = i l − z between the global y-axis and the local z-axis, and
introducing notations T i

t (yt), T i
y (yt), T i

yy(yt), and αi
t (yt) for

∂T i (yt)/∂ t∂T i (yt)/∂y∂2T i (yt)/∂y2 and ∂αi (yt)/∂ t , respec-
tively, the state evolution for mode i in the time interval,
t ∈ [τi−1τi ] takes the form

T i
t (y, t) = aT i

yy(y, t)+ b(y) f i (T i (y, t), αi (y, t), θ) in �i
τ

(2a)

T i
y (i l, t)+eI0 = c(T i (il, t)− T∞) on �i

1 (2b)

T i
y (0, t) = 0 on �i

2 (2c)

αi
t (y, t) = d(y) f i (T i (y, t), αi (y, t), θ) in �i

τ (2d)

where both the temperature state T i (y, t) and cure state
αi (y, t) evolve in the spatiotemporal domain defined by
�i
τ = [0, i l] × [τi−1τi ]. The boundary conditions are also

defined on �i
1 = {i l} × [τi−1τi ], and �i

2 = {0} × [τi−1τi ]. The
nonlinear function f i is

f i (T i (y, t), αi (y, t), θ)

= I p
0 K i

D(α)× {
K i

1(T )+ K i
2(T )α

i (y, t)
}

×(1−αi (y, t))(B̄ − αi (y, t)) in �i
τ (3)

where θ ∈ Rm is a vector of uncertain parameters and
d(y) = sq

0 ex p(−λp(il − y)), b(y) = d(y)(vr�Hrρr/ρcp),
a = kz/ρcp , c = h/kz and e = ϑ/kz ; K D , K1 and K2 are
given in (1f)–(1h). In the following analysis, for brevity, we
use f i (T i , αi , θ) instead of f i (T i (y, t), αi (y, t), θ), dropping
the spatial and temporal indices of the state. Note that in (2),
the process input I0 is treated as a constant parameter and the
layering times (τi ∈ R+, i = 1, . . . , N) are the control
variables to be optimized. Note that the feasible layering times
must satisfy the sequence 0 ≤ τ0 < τ1 <, . . . ,< τN < ∞.

For the UV curing process, the main uncertain parameters
include the cure kinetics parameter constants θ = [E1, E2, B̄]′.
To avoid confusion with the temperature state T , the transpose
of a vector is denoted by [·]′ instead of the usual [·]T .

For two or more layers, at the interface of new and earlier
layers, the INTCs at i = 1, 2, . . . , N − 1 are defined as[

kz T i
y (i l, t)

]
new layer = [

kz T i
y (il, t)

]
previous layer (4a)

[T i (i l, t)]new layer = [T i (il, t)]previous layer. (4b)

At each switching time τi , i = 1, 2, . . . , N−1, the transition
to the new mode defines the new initial conditions for the next
mode. This is described compactly for both the temperature
and cure state by

χ i+1(y, τ+
i

) = Fi (χ i(y, τ−
i

)
, χ0(y)

)
(5)

where χ = [T, α]′ is the augmented state of temperature and
cure level, χ i (y, τ−

i ) and χ i+1(y, τ+
i ) are the left-hand and

right-hand limit values of both the temperature and cure level
states in mode i and mode i +1, respectively, at the switching
time τi , and χ0(y) is the initial state at initial time τ0.
Fi : �i → �i+1 is the mode transition operator for both
the states at switching time τi defined over �i ∈ [0, il]. Note
that both the states coexist in the spatial domain in all modes.

To give a particular example of the mode transition operator
for this application, the starting temperature for the interface
in the new mode is taken as the average temperature at the
interface of the new layer and the layer in the curing process
at the switching time τi . The cure state at the interface is
taken as that of the cure state already in the curing process,
because cure conversion is an irreversible process. For all other
locations in the domain away from the interfaces that were
already being cured (all the previous layers), the initial values
of the temperature and cure states in the new mode take their
values from the end of the previous mode. Of course, the initial
value of all the state elements corresponding to the locations
in the new layer will take on ambient conditions.

For example, for the temperature state mode transition
operator

Fi (χ i (y, τ−
i

)
, χ0(y)

)

=

⎧⎪⎪⎨
⎪⎪⎩
χ i
(
y, τ−

i

)
, 0 ≤ y < i l

1

2

(
χ i
(
y, τ−

i

)+ χ0(y)
)
, y = i l

χ0(y), il < y ≤ (i + 1)l.

(6)

For the cure state, the only change from (6) is at the
interface node y = i l, Fi (χ i (y, τ−

i ), χ0(y)) = χ i (y, τ−
i ).

Equations (2)–(6) complete the hybrid system formulation
for the layer-by-layer UV curing process.

III. ROBUST OPTIMAL CONTROL OF THE HYBRID SYSTEM

For the hybrid system described by (2)–(5), the optimal
control problem can be posed as one of finding the optimal
switching time vector u = [τ1, . . . , τN ]′ that minimizes a cost
function of the following form:

J (u, θ) =
∫ N

�
g
(
χN (y, τ−

N

)
, θ
)
dy +

N−1∑
i=1

γ i (τ−
i

)
(7)

where g is a terminal cost at final time τN and γ i (τ−
i ) is the

cost associated with switching at τi . The initial time τ0 and
the state χ(y, τ0) are assumed fixed, while the final time τN

and the state χ(y, τ−
N ) are free to be optimized. θ is again the

uncertain parameter vector.
For the nominal process optimization we treated in [14], the

optimal cost function in (7) is effectively computed by fixing θ
at its nominal value θ̄ . In the presence of uncertainty, which
is the case we treat in this paper, the cost function in (7) is
modified to include a robustness term to account for parameter
variations. The modified cost functions will have two parts:
a part that defines the performance objective with nominal
parameters and a part that defines the variation/or sensitivity
of the objective to parameter changes. It is written as [28]

JR(u, θ) � J (u, θ̄ )+ β Jθ (u, θ̄ )[Jθ (u, θ̄ )]′ (8)
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where β ≥ 0 is considered as a robustness measure that defines
a tradeoff between the nominal performance and the risk due
to uncertainty; and Jθ (u, θ̄ ) is the first moment sensitivity term
defined as

Jθ (u, θ̄ ) � ∂ J (u, θ)

∂θ

∣∣∣∣
θ=θ̄

. (9)

For β > 0, conventional optimization techniques cannot
be used directly because the modified cost function JR(u, θ)
contains sensitivity terms that are functions of states
(e.g. ∂χN (y, τ−

N )/∂θ) but are not explicit in the state dynam-
ics. To solve the robust optimization problem, we first con-
struct the auxiliary dynamics for the system sensitivity.

A. Derivation of System Sensitivity

To obtain a characterization of the sensitivity of the hybrid
system given in (2)–(5) to the uncertain parameter vector θ , we
assume that both f and g are continuously differentiable and
f is twice continuously differentiable. Following the forward
sensitivity analysis approach from [40], we derive the auxiliary
dynamics that defines the system sensitivity in our hybrid
framework to be as follows (for j = 1, . . . ,m):
ST i, j

t (y, t)=aST i, j
yy (y, t)+b(y) f si(T i, αi, ST i, j, Sαi, j , θ) in�i

τ

(10a)

ST i, j
y (i l, t) = cST i, j (il, t) on �i

1 (10b)

ST i, j
y (0, t) = 0 on �i

2 (10c)

Sαi, j
t (y, t) = d(y) f si (T i , αi , ST i, j , Sαi, j , θ) in �i

τ

(10d)

where the nonlinear function f si is

f si (T i , αi , ST i, j , Sαi, j , θ) = f i
T (T

i , αi , θ)ST i, j (y, t)

+ f i
α(T

i , αi , θ)Sαi, j (y, t)+ f i, j
θ (T i , αi , θ) in �i

τ . (11)

The following notations are adopted: ST i, j = ∂T i/∂θ j ,
Sαi, j = ∂αi/∂θ j , f i

T = ∂ f i/∂T i , f i
α = ∂ f i/∂αi and

f i, j
θ = ∂ f i/∂θ j . Note that the dynamics in (10) are derived

considering the sensitivity of the state dynamics to variation
of one parameter at a time (θ j , j = 1, . . . ,m).

Similarly, the sensitivity of the INTC in (4) and the mode
transition operators in (5) take the forms in (12) and (13),
respectively.

Sensitivity of Interface Condition (INTC):[
kz ST i, j

y (i l, t)
]

new layer = [
kz ST i, j

y (il, t)
]

previous layer

(12a)

[ST i, j (i l, t)]new layer = [ST i, j (il, t)]previous layer.

(12b)

Sensitivity of Mode Transition Operators:

Sχ i+1, j (y, τ+
i

) = Fi
χ

(
χ i(y, τ−

i

)
, χ0(y)

)
Sχ i, j (y, τ−

i

)
(13)

where Fi
χ = ∂Fi/∂χ i .

Neglecting the switching cost for our particular application
problem of the layer-by-layer UV curing process (assuming
instantaneous and equal cost layering operations), the robust
optimization of the hybrid system is posed as

min
u

⎡
⎢⎣
∫ N
� g

(
χN

(
y, τ−

N

)
, θ̄
)
dy

+
m∑

j=1
β j

[∫ N
�

∂g
(
χN
(

y,τ−
N

)
,θ̄
)

∂χN SχN, j
(
y, τ−

N

)]2

⎤
⎥⎦

s.t. (2), (4), (5), (10), (12), and (13) (14)

where SχN, j (y, τ−
N ) = ∂χN (y, τ−

N )/∂θ j .

B. Optimality Conditions

In the literature, for hybrid/switching systems, a hier-
archal decomposition (or two-stage optimization) method
is often used to solve a generic optimal control problem
that involves optimal switching sequence, optimal switching
instants (switching time), and optimal continuous inputs [30],
[32], [41]. In [41], stage 1 is posed as an optimization
problem of both the continuous input and switching instants,
while stage 2 solves the optimal switching sequence. Then,
stage 1 is further decomposed into two suboptimizations,
where the first one solves the optimal continuous input for
given switching instants and switching sequence using the
variational approach, while the second one solves for the
optimal switching instants by posing the problem as a nonlin-
ear optimization problem. In [31] and [42], for a predefined
switching sequence, the variational approach is directly used
to solve both the optimal continuous inputs and the switching
instants simultaneously by defining perturbations over the
optimization variables without decomposing the optimization
problem. In [43] and [44], a direct differentiation of the
cost function is used to approximate the derivative of the
cost function with respect to switching instants to set up a
numerical algorithm for the optimal switching instants. In this
paper, given the predefined switching sequence and constant
continuous input of UV radiation over all the modes, we
found the classical variational method outlined in [45] to be
more straightforward to apply and to solve the robust optimal
switching instants (layering times), given the hybrid realization
of the SCC process described by the coupled PDE–ODE
dynamics in each mode.

In order to derive the necessary conditions for optimality, we
first adjoin the dynamic constraint of the process dynamics (2)
and system sensitivity (10), and the corresponding transition
constraints (5) and (13) to the cost function defined in (14)
using Lagrange multipliers p̄T i (y, t) for the temperature state
equation, q̄αi(y, t) for the cure level state equation, p̄si, j (y, t)
for the sensitivity dynamics of temperature, q̄si, j (y, t) for the
sensitivity dynamics of cure level, μi (y, τ−

i ) for the transition
constraint, and μsi, j (y, τ−

i ) for the sensitivity transition con-
straint. The first-order necessary conditions for optimality are
stated here. The derivation is detailed in Appendix A.

1) Necessary Conditions: Modeling the layer-by-layer cur-
ing process as a hybrid system of the form (2)–(5) and deriv-
ing auxiliary sensitivity dynamics of the form in (10)–(13),
an extremum to the cost defined in (14) can be achieved
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by choosing a control variable u that satisfies the following
conditions.

a) For t∈ [τi−1τi ], the adjoint dynamics of the coupled
PDE–ODE form the following.

Adjoint equations for the hybrid process dynamics

p̄T i
t (y, t) = −a p̄T i

yy(y, t)−ϒ i ( p̄T , q̄α)

× f i
T (T

i , αi , θ)−
m∑

j=1

{
ϒsi, j ( p̄s, q̄s)

× f si
T (T

i , αi , ST i, j , Sαi, j , θ)
}

in �i
τ (15a)

p̄T i
y (i l, t) = c p̄T i (il, t) on �i

1 (15b)

p̄T i
y (0, t) = 0 on �i

2 (15c)

q̄αi
t (y, t) = −ϒ i ( p̄T , q̄α) f i

α(T
i , αi , θ)

−
m∑

j=1

{
ϒsi, j ( p̄s , q̄s) f si

α (T
i , αi , ST i, j , Sαi, j , θ)

}
in �i

τ

(15d)

where ϒ i ( p̄T , q̄α) = b(y) p̄T i (y, t) + d(y)q̄αi

(y, t) f si
α = ∂ f si/∂αi , ϒsi, j ( p̄s, q̄s) = b(y) p̄si, j

(y, t)+ d(y)q̄si, j (y, t), and f si
T = ∂ f si/∂T i .

Adjoint equations for auxiliary sensitivity dynamics for
j = 1, 2, . . . ,m

p̄si, j
t (y, t) = −a p̄si, j

yy (y, t)−ϒsi, j ( p̄s, q̄s)

× f i
T (T

i , αi , θ) in �iτ (16a)

p̄si, j
y (i l, t) = c p̄si, j (il, t) on �i

1 (16b)

p̄si, j
y (0, t) = 0 on �i

2 (16c)

q̄si, j
t (y, t)= −ϒsi, j ( p̄s, q̄s) f i

α(T
i, αi, θ) in �iτ .

(16d)

b) Boundary conditions at t = τN

p̄T N (y, τ−
N

) = ψT
(
χ̄N (y, τ−

N

)
, θ
)

(17a)

q̄T N (y, τ−
N

) = ψα
(
χ̄N (y, τ−

N

)
, θ
)

(17b)

p̄s N, j (y, τ−
N

) = ψST

(
χ̄N (y, τ−

N

)
, θ
)

(17c)

q̄s N, j (y, τ−
N

) = ψSα
(
χ̄N (y, τ−

N

)
, θ
)

(17d)

where ψχ̄ (χ̄
N (y, τ−

N ), θ) = ∂ψ(χ̄N (y, τ−
N ), θ)/∂χ̄ ,

χ̄N = [T N , αN , ST N, j , SαN, j ]′ and the explicit form
of the function ψ(χ̄N (y, τ−

N ), θ) is given in the
Appendix (A4).

c) Boundary conditions time t = τi , i = 1, 2, . . . , N − 1

p̄T i(y, τ−
i

) = Fi ′
T

(
χ i (y, τ−

i

)
, χ0(y)

)
p̄T i+1(y, τ+

i

)
(18a)

q̄T i(y, τ−
i

) = Fi ′
α

(
χ i (y, τ−

i

)
, χ0(y)

)
q̄T i+1(y, τ+

i

)
(18b)

p̄si, j (y, τ−
i

) = Fi ′
T

(
χ i (y, τ−

i

)
, χ0(y)

)
p̄si+1, j (y, τ+

i

)
(18c)

q̄si, j (y, τ−
i

) = Fi ′
α

(
χ i (y, τ−

i

)
, χ0(y)

)
q̄si+1, j (y, τ+

i

)
.

(18d)

TABLE I

NUMERICAL ALGORITHM

Note that the interior adjoint conditions (18) are derived
by setting (Fi

χχ = 0)for the example condition given
in (6).

d) For τi i = 1, 2, . . . , N − 1, the optimality conditions
in (19a) should hold, and for τN , (19b) should hold

H i(τ−
i , θ̄

)− H i+1(τ+
i , θ̄

) = 0 (19a)

H N(τ−
N , θ̄

) = 0 (19b)

where

H i(τ−
i , θ̄

)

=
∫ i

�

[
a p̄T i(y,τ−

i

)
T i

yy

(
y,τ−

i

)+ϒ i ( p̄T , q̄α) f i (T i, αi , θ̄ )

+
m∑

j=1

{
a p̄si, j (y, τ−

i

)
ST i, j

yy
(
y, τ−

i

)

+ϒsi, j ( p̄s, q̄s) f si(T i , αi , ST i, j , Sαi, j , θ̄ )
}]

dy.

(20)

C. Computation Algorithm
Based on the above necessary conditions for optimality, the

steepest descent algorithm can be applied to solve for the
optimal layering time control vector [τ1, . . . , τN ]′. Note that
some of the necessary conditions involve solving PDEs as well
as resolving the interface constraints at a new layer addition.
These are addressed in the numerical algorithm provided
in Table I.
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TABLE II

PARAMETER VALUES USED IN THE SIMULATIONS

Remark 1: For this numerical algorithm, the PDEs can be
transformed to a set of ODEs using a central-in-space finite-
difference method. Then, the augmented ODE systems can be
solved forward or backward-in-time using Euler’s method.

Remark 2: The optimal interlayer hold times (time gaps
between new layers) can be computed by taking the differences
between successive elements of the computed control vector
[τ1, . . . , τN ]′.

IV. RESULTS AND DISCUSSION

In this section, we present the simulation results to demon-
strate the feasibility and advantage of the proposed robust
optimization scheme by simulating the composite laminate
(fiberglass plus unsaturated polyester resin) fabrication process
via the layer-by-layer SCC process. Here, we are interested
in achieving near-through-cure in all layers at the end of the
curing process by optimizing the interlayer hold times. This
is described by selecting a nominal terminal cost function
g in (13) of the form g(χN (y, τ−

N , θ̄ )= 0.5{αN (y, τ−
N ) −

αd (y)}2, y ∈ [0, Nl].
For the simulation study, we present here the associated

thermal, chemical, and material constants for photopolymer-
ization of unsaturated polyester resin, which are extracted
from [47] and updated with our own curing experiments [16].
For the fiberglass, E-glass thermal properties such as ther-
mal conductivity (kz = 0.012 W/cm · °C), specific heat
(cp = 0.8 J/g · °C), and density (ρ = 2.55 g/cm3) are used.
The resin volume fraction is assumed to be 60% for computing
the average thermal properties of the composite laminate. The
associated parameters used in the simulations are summarized
in Table II.

For the process simulation and implementation of the opti-
mization algorithm, a ten-node spatial discretization is adopted
for each layer to convert the temperature and sensitivity PDEs
and the corresponding adjoint PDEs to a set of ODEs in time.
A total of ten layers with a thickness of 1 mm each are
considered to fabricate a 10-mm thick composite laminate.

TABLE III

FINAL CURING TIME FOR CONSIDERED CASES

The desired/target final cure level is specified to be 90% across
all layers (desired cure level of α = 0.9). A constant UV
intensity of 65 mW/cm2 is used for the entire curing duration.

We illustrate the advantages of the proposed robust opti-
mization scheme by comparing the results of two robust
optimal cases, one nominal optimal case and one nonoptimal
case.

1) Case 1: A nonoptimal approach with equal-interval
layering time.

2) Case 2: Nominal optimized layering time control with
robustness measure β = 0.

3) Case 3: Robust optimized layering time control with
robustness measure β = 5.

4) Case 4: Robust optimized layering time control with
robustness measure β = 10.

For the non-optimal case of equal-interval layering
time (Case 1), the length of the overall curing time is kept
the same as that of the overall curing duration of the nominal
optimal case (Case 2). As will be shown in Figs. 6–8,
the achieved final cure level distribution with equal-interval
layering time (Case 1) is not acceptable; we shall not dwell
on this case too much. For the last two robust optimal
cases (Cases 3 and 4), the optimization is executed until
the robustness term of the cost function defined by system
sensitivity reaches near zero. The second case is simulated
using nominal optimal layering times as presented in [14],
while the third and fourth cases are considered the robust
optimization result presented in this paper. The overall curing
times computed for each optimization case are summarized
in Table III.

The results are presented in two parts. First, we present
the spatiotemporal evolutions of both the cure state and the
temperature states for the nominal optimization case (Case 2)
to illustrate the cure and temperature propagation as the part
is built in a layer-by-layer SCC process. We will then evaluate
the proposed robust optimization of the layering time control
by considering specific parametric uncertainties.

As shown in Fig. 3, complete cure is achieved in all
layers by first initiating the cure in the bottom layers and
following the SCC process. As the top layers are added and
cure with direct UV exposure, the cure initiated in the bottom
layers continues to propagate with the attenuated UV radiation
reaching there. As a result of optimizing the layering time
control (interlayer hold times), the cure in the bottom layers
proceeds with the attenuated radiation for an extended length
of time while in the top layers it proceeds with less attenuated
radiation for shorter times. This differentiation helps to mini-
mize the final cure level deviation across the part. The optimal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 3. Cure level profile with nominal optimized layering time control.

Fig. 4. Temperature profile with nominal optimized layering time control.

interlayer hold times and their trend for this nominally optimal
case are shown in Fig. 9, along with the results for the robust
optimal cases to be discussed below.

Fig. 4 shows the corresponding temperature evolution dur-
ing the layer-by-layer UV curing process. After the cure is
initiated, the temperature gradually builds up. However, unlike
the cure state, after each layer addition the temperature initially
decreases before increasing again. This is due to the heat
transfer between the new layer (added at ambient conditions)
and the previous layers at elevated temperatures This self-
cooling property of the layer-by-layer SSC process by itself
may help to reduce the overall curing temperature gradients
while processing thick sections.

For the robust optimization cases (Cases 3 and 4), we
investigated the effect of variations in each component of the
uncertain parameter vector θ = [E1, E2, B̄]′ on the nominally
optimal result. This is experimented by simulations studies
that consider a ±10% deviation from nominal for each of
the three uncertain parameters. The computed nominal cost
function for the different values of the uncertain parameter
is plotted in Fig. 5. The parameter variations are considered
one at a time on the same nominally optimized layering time
control of Case 2.

Fig. 5 shows that the deviation in parameter E2 has the most
significant effect on the nominal cost function compared with

Fig. 5. Nominal cost function for up to 10% deviation of the uncertain
parameters (uNOC is nominal control input).

Fig. 6. Final cure level profile with +10% parameter deviation in E2.

the deviation in the other parameters E1 and B̄ . Furthermore,
it is clear from the plot that the cost function changes as
the increase and decrease of these factors are not symmetric.
This can be explained by the nature of the cure propagation
captured by the cure kinetics model in (2). For example, in the
case of parameter E2, the deviation in the positive direction
(increase of E2 from its nominal value) decreases the cure
rate and this causes an incomplete cure and larger deviation
of the final cure level as the parameter deviates more. Whereas
the deviation in the negative direction increases the cure rate,
the rate of this cure rate increment after a critical cure level
of αc = 0.92 (which is closer to the desired cure level of
α = 0.9) is not significant because of the diffusion-controlled
effect. As a result, significant changes are not observed in
the nominal cost function due to a decrease of E2 from its
nominal value. The same discussion can be extended to the
deviations in the other two uncertain parameters. Therefore, for
the results presented below, we only consider the uncertainty in
the parameterE2 for the robust optimization cases, specifically
its deviation in the positive direction.

As discussed in the Introduction and later shown in Fig. 3,
the optimized SCC scheme can be used to achieve the desired
cure level with the minimum overall deviation in all the
layers (≤5%). However, the presence of uncertainty in the
process parameters affects this nominal optimization result.
As shown in Fig. 6, a +10% deviation in E2 in the process
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Fig. 7. Final cure level profile with +6% parameter deviation in E2.

model reduces the nominally optimized result (Case 2) of the
final cure level from about 90% (see Fig. 3) to about 55%
on average with an overall deviation of more than 15%
across layers. On the other hand, with robust optimization
that penalizes the sensitivity of the objective function, the cure
level deviations in the layers as well as between the desired
and achieved final cure level are significantly reduced. With
different choices of the robustness measure, β = 5 (Case 3)
and β = 10 (Case 4), the final cure level of about 70%
and 80% are achieved, respectively, with an overall cure level
deviation across the part of less than 12% and 7%, respectively.

A similar result presented in Fig. 7 for a +6% deviation
in E2 shows that the desired final cure level of 90% is nearly
achieved in all the layers with the robust optimization (Case 4),
while the nominal optimization (Case 2) subject to this uncer-
tainty achieves a final cure level of less than 75%. From the
results in Figs. 6 and 7, it is clear that by increasing the
robustness measure β, the robust performance is improved sig-
nificantly as the sensitivity of the final cure state is penalized
with this measure.

Fig. 8 shows the performance for a 0% deviation in E2.
In both the cases of robust optimization (Cases 3 and 4), mar-
ginal overcure is observed in all the layers, while the nominal
optimization (Case 2) is just enough to achieve the desired cure
level distribution. The overcure can be explained by the need
for longer overall curing times in the robust optimization cases
(Table III), which comes about to compensate the degraded
cure propagation especially in the case of the positive direction
parameter deviations discussed above.

Fig. 9 shows that the control actions (interlayer hold times)
for the robust and nominal optimal cases differ but follow a
similar trend in all the three optimal cases. They first decrease
as the early layers are added from the bottom and then increase
for the top layers. The larger hold times computed for the
early bottom layers can be explained by the anticipation via
optimization of the attenuation of UV radiation in the bottom
layers as new layers are added on. The largest hold time for the
last and top layer can be explained by the need for bringing
the cure level there from zero to the desired level quickly,
while the cure level continues to build in the lower layers

Fig. 8. Final cure level profile with 0% parameter deviation in E2.

Fig. 9. Optimized interlayer hold times for Cases 2–4.

Fig. 10. Sensitivity of the final cure state for Cases 3 and 4 (dα/dθ is
normalized with respect to its maximum).

with attenuated UV radiation. Particularly, for the robust cases
(Cases 3 and 4), relatively larger interlayer hold times are
computed to accommodate the possible cure rate degradation
due to parameter uncertainty.

Fig. 10 shows the sensitivity of the final cure state with
an increment of the robustness measure β. For the considered
worst case +10% deviation in E2, Fig. 10 also shows that there
is still room for further improvement for robust performance
by increasing β until the sensitivity of the final cure state to
the parameter is eliminated.
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Fig. 11. Convergence of computational algorthim. (a) Total cost. (b) Nominal
cost. (c) First-moment sensitivity cost. (d) Second-moment sensitivity cost.

Finally, in Fig. 11, the progresses of different segments of
the cost function are shown to comment on the computational
algorithm as well as to illustrate its convergence. The robust
optimization of the layering control discussed earlier in this
paper considers only the first-moment Taylor’s approximation
of the sensitivity of the cost function to parametric uncertainty
given in (9), and then formulates the first moment sensitivity
dynamics and the corresponding adjoint system. However,
for the specific structure of the cost function considered in
this paper, we found that the consideration of the second-
moment Taylor’s approximation of the sensitivity improves
the performance of the robust optimization significantly. The
specific forms of the nominal cost function as well as the
first moment and the second moment are given in (B1).
The additional auxiliary sensitivity dynamics associated with
second-moment sensitivity are given in (B2).

As shown in Fig. 11, the cost associated with the first-
moment sensitivity [Fig. 11(c)] converges close to zero in a
few iterations (less than ten) and stops changing, while the cost
with second moment [Fig. 11(d)] continues to improve with
more iteration. This is because the second moment introduces
additional quadratic term of final cure state sensitivity that
reduces smoothly with increasing iteration. The first moment
only consists of the product of the actual cure state deviation
and cure state sensitivity, which prematurely vanishes as the
actual cure state deviation approaches zero before the cure
state sensitivity goes to zero. That is, a local optimal solution
is encountered when only the first moment was retained.

It should be noted that the improvement of the performance
with the second moment cost sensitivity considerations comes
with the added complexity and increase in the computational
burden. However, since these computations are done offline to
find robust control sequences (layering times), these compu-
tations are very feasible. For the numerical results presented
in Figs. 6–8, the CPU time for the optimization algorithm
was of the order of 1.5 h (on a high-end 2012 Dell laptop:
Latitude E6520, intel corei7-2640M, 2.8 GHZ CPU, 8 GB
RAM, 500 GB Hard Disk), with the code implemented in
MATLAB, for a model with ten-node discretization per layer
and consideration of the second-order moment for robustness.
The discretization number was held the same for all dynamics

including process state dynamics, sensitivity dynamics, and
adjoint system dynamics. Of course, the CPU time can be
improved, for example, by considering different discretization
sizes for the state dynamics (fine discretization) and the adjoint
system dynamics (coarse discretization).

V. CONCLUSION

This paper presented a systematic layering control and a
robust optimization scheme for a layer-by-layer deposition
and curing process by modeling the process as a multimode
hybrid dynamic system with a predefined mode sequence and
increasing spatial domain. The hybrid interpretation of the
layering and curing sequence has been detailed by defining
INTCs and mode-transition operators for the layer-by-layer
deposition process. Then, the layering times (the interlayer
times) are posed as the control variables to be selected
optimally so as minimize final cure level deviation in a
multilayer thick part in the presence of parameter uncertainties.
The necessary optimality conditions that can be used to
compute the interlayer hold times were derived by defining the
sensitivity of the objective function as a robustness measure
and considering it as an additional cost function. The robust
optimization problem is posed and solved by adjoining the
corresponding system sensitivity and state dynamics as well
as the INTCs and mode-transition operators within the hybrid
framework.

This paper included detailed simulation results and analysis
of the proposed schemes using a recently verified model for
a UV-curing process. The simulations focused on a thick
composite laminate processing application and illustrated the
advantages of the robust hybrid system optimization schemes
in achieving robust process control via the optimal-inter layer
hold times in the presence of uncertain parameters. Compu-
tational aspects have also been discussed, where it is argued
that for the offline robust optimization of the layering times,
the convergence of the outlined algorithm can be refined by
adding second-moment sensitivity costs to the objective and
modify the auxiliary sensitivity dynamics accordingly.

APPENDIX A
DERIVATION OF NECESSARY CONDITIONS

FOR OPTIMALITY

We use Lagrange multipliers to adjoin the state dynam-
ics (2), sensitivity dynamics (10), and corresponding transition
constraints (5) and (13), respectively, to the cost functions in
(14) as defined in Section III. The augmented optimal cost is
given by

J =
N∑

i=1

∫ τi

τi−1

∫ i

�
Li ( p̄T i, p̄si, j, q̄αi, q̄si, j, T i, αi, ST i, j, Sαi, j )dydt

+
N−1∑
i=1

∫ i

�
Mi (μi, μsi, j, χ i, χ i+1, χ si, j, τi )dy+

∫ N

�
ψ(χ̄N, θ)dy

(A1)
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where

Li ( p̄T i , p̄si, j , q̄αi , q̄si, j , T i , αi , ST i, j , Sαi, j )

= − p̄T i (T i
t − aT i

yy

)− q̄αiαi
t +ϒ i ( p̄T , q̄α) f i (T i , αi , θ)

+
m∑

j=1

{− p̄si, j (ST i, j
t − aST i, j

yy
)− q̄si, j Sαi, j

t

+ϒsi, j ( p̄s, q̄s) f si (T i , αi , ST i, j , Sαi, j, θ)
}

(A2)

Mi (μi , μsi, j , χ i , χ i+1, χ si, j , τi )

= μi(τ−
i

)[
Fi (χ i (τ−

i

)
, χ0

)− χ i+1(τ+
i

)]

+
m∑

j=1

μsi, j (τ−
i

)[
Fi
χ

(
χ i(τ−

i

)
, χ0

)
Sχ i, j (τ−

i

)−Sχ i+1, j (τ+
i

)]

(A3)

ψ(χ̄N , θ̄ ) = g
(
χN (y, τ−

N

)
, θ̄
)

+
m∑

i=1

β j
∂g
(
χN

(
y, τ−

N

)
, θ̄
)

∂χN
SχN, j (ζ, τ−

N

)

×
∫
�ζ

∂g
(
χN

(
ζ, τ−

N

)
, θ̄
)

∂χN
SχN, j (ζ, τ−

N

)
dζ,

�ζ ∈ [0, Nl]. (A4)

The function ψ in (A4) contains a cost function that
involves square of the integral from (13) written in the
form: [∫ l

0 f (x)dx]2 = ∫ l
0 { f (x)

∫ l
0 f (y)dy}dx to simplify the

derivation.
For brevity, the spatial and temporal indices of the state are

dropped in (A1)–(A4) and in the following derivation, except
at the switching node τi .

To compute the gradient of the robust optimal cost, we
perturb the variables in (A1) in such a way that τi→τi + δτi ,
T i→T i +δT i , αi→αi +δαi , ST i→ST i +δST i and Sαi→Sαi +
δSαi . Substituting the defined perturbation into (A1) and
taking first-order Taylor’s approximation and subtracting (A1)
from the perturbed result, we obtain the gradient of the optimal
cost

δ J =
N∑

i=1

∫ τi

τi−1

∫ i

�

×δLi ( p̄T i, p̄si, j, q̄αi, q̄si, j, δT i, δαi, δST i, j, δSαi, j )dydt

+
N−1∑
i=1

∫ i

�
δMi (μi , μsi, j , δχ i , δχ i+1, δχ si, j , δτi )dy

+
∫ N

�

[
ψχ̄N δχ̄N (τ−

N

)+ ψχ̄N χ̄N
t

(
τ−

N

)
δτN

]
dy (A5)

where

δLi ( p̄T i , p̄si, j , q̄αi , q̄si, j , δT i , δαi , δST i, j , δSαi, j )

= − p̄T i (δT i
t − aδT i

yy

)− q̄αiδαi
t +ϒ i ( p̄T , q̄α)

×[ f i
T δT i + f i

αδα
i ]+

m∑
j=1

{− p̄si, j ∗ (δST i, j
t − aδST i, j

yy
)

− q̄si, jδSαi, j
t +ϒsi, j ( p̄s, q̄s)

[
f si
T δT i + f si

α δα
i

+ f i
T δST i, j f i

αδSαi, j ]} (A6)

δMi (μi , μsi, j , δχ i , δχ i+1, δχ si, j , δτi )

= μi(τ−
i

)[(
Fi
χχ

i
t

(
τ−

i

)− χ i+1
t

(
τ+

i

))
δτi

+ Fi
χδχ

i(τ−
i

)− δχ i+1(τ+
i

)]+
m∑

j=1

μsi, j (τ−
i

)

∗ [(Fi
χ Sχ i, j

t

(
τ−

i

)− Sχ i+1, j
t

(
τ+

i

))
δτi

+ Fi
χδSχ i, j (τ−

i

)− δSχ i+1, j (τ+
i

)]
. (A7)

In (A5), we impose three considerations.

1) The change in state variables due to a change in
the switching time and final time is approximated
by the linear relation (e.g., Fi (χ i (τi + δχ i )−, χ0) =
Fi (χ i (τ−

i ), χ0)+ Fi
Tχ

i
t (τ

−
i )δτi [29].

2) In the open intervals (τiτi + δτi ) and (τi−1τi−1 +
δτi−1), the dynamic constraints such as Tti − aTyyi −
b(y) f i (T i , αi , θ) are set to zero.

3) To simplify the derivation, the transition operator for
the sensitivity dynamic Fi

χ is assumed to be constant
matrices [for example, condition in (6)].

Using integration by parts for the integral terms that contain
time and space derivatives, and substituting the perturbed BCs
from (2), part of the integral terms in (A6) read

N∑
i=1

∫ τi

τi−1

∫
�i

[
p̄T i(δT i

t − aδT i
yy

)+ q̄αiδαi
t

]
dydt

=
N∑

i=1

∫
�i

{
p̄T iδT i |τi − p̄T iδT i |τi−1

+ q̄αiδαi |τi − q̄αiδαi |τi−1

}
dy

−
∫ τi

τi−1

{[c p̄T i (i l)− p̄T i
y (i l)]δT i (i l)+ a p̄T i

y (0)δT i (0)
}
dt

−
N∑

i=1

∫ τi

τi−1

∫
�i

[
δT i( p̄T i

t + a p̄T i
yy

)+ q̄αi
t δα

i ]dydt . (A8)

We further simplify the terms in (A6) and partly in (A8),
setting δτ 0, δT 0 and δα0 to zero for fixed initial time and
states. An example case is given as

N∑
i=1

∫ i

�
p̄T iδT i |τi dy =

N−1∑
i=1

∫ i

�
p̄T iδT i dy+

∫ N

�
p̄T N δT N dy.

(A9)

Substituting (A9) into (A8), and substituting the simplified
results back into (A5) and reorganizing terms, we arrive at
the adjoint equations of the coupled PDE–ODE system given
in (15)–(18). Then setting the remaining terms to zero to make
δ J = 0, we arrive at the necessary condition for optimality
given by (19).

APPENDIX B
SYSTEM SENSITIVITY DYNAMICS WITH CONSIDERATION

OF SECOND MOMENT ROBUSTNESS

To improve the robustness performance of the proposed
scheme, the cost function given in (14) can be modified to
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include the second-moment robustness term

J (u, θ) =
∫
�N

g
(
χN (y, τ−

N

)
, θ̄
)
dy

︸ ︷︷ ︸
Nominal cost

+
m∑

j=1

β j

[∫
�N

∂g
(
χN

(
y, τ−

N

)
, θ̄
)

∂χN
Sχ

N, j (
y, τ−

N

)
dy

]2

︸ ︷︷ ︸
First moment sensitivity cost

+
[

1

2

∫
�N

{[
Sχ

N, j(
y, τ−

N

)]2+∂g
(
χN
(
y, τ−

N

)
, θ̄
)

∂χN
Sχ

N, j

θ

(
y, τ−

N

)}
dy

]2

︸ ︷︷ ︸
Second moment sensitivity cost

(B1)

where SχN, j
θ = ∂SχN, j /∂θ j .

The corresponding system sensitivity dynamics with
second-moment sensitivity consideration are, for j = 1, . . . ,m

ST i, j
θ t (y, t) = aST i, j

θyy (y, t)+ b(y)

×{ f si
T ST

i (y, t)+ f si
α Sαi, j (y, t)+ f i, j

θα Sαi, j (y, t)

+ f i, j
θT ST

i (y, t)+ f i
T ST i, j

θ (y, t)+ f i
αSαi, j
θ (y, t)

+ f i, j
θθ

}
in �i

τ (B2a)

ST i, j
θy (i l, t) = cST i, j

θ (il, t) on �i
1 (B2b)

ST i, j
θy (0, t) = 0 on �i

2 (B2c)

Sαi, j
θ t (y, t) = d(y)

{
f si
T ST

i (y, t)+ f si
α Sαi, j (y, t)

+ f i, j
θα Sαi, j (y, t)+ f i, j

θT ST
i (y, t)+ f i

T ST i, j
θ (y, t)

+ f i
αSαi, j
θ (y, t)+ f i, j

θθ

}
in �i

τ . (B2d)

The associated sensitivity of the INTCs and mode transition
operators can be derived taking partial derivative with respect
to θ on both sides of (11) and (12), respectively. For the
implementation of the numerical algorithm, the corresponding
adjoint system is derived in the same way as in Appendix A
by adjoining the additional sensitivity dynamics (B2) and the
associated transition constraints.
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